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Abstract

This paper documents vanilla interest‐rate options newly introduced in China.

The underlying rates are the RMB loan prime rates (LPRs), the foremost

interest rates that matter to almost all businesses and households in China.

They are digital with a tick size of five basis points, and the changes only occur

monthly at predetermined announcement times. We propose a novel

continuous‐time discrete‐state market model based on the integer‐valued
Skellam distribution, and derive arbitrage‐free pricing formulas in closed

forms. We advocate that it is more meaningful to quote LPR option prices in

terms of implied intensity rather than implied volatility.
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1 | INTRODUCTION

On 23 March 2020, China started trading vanilla interest‐rate options including caps, floors, and swaptions, which
protect lenders and borrowers against interest rate fluctuations, in interbank markets via the platform of the National
Interbank Funding Center (NIFC). The aim is to enable the China's interbank interest‐rate derivatives market to play a
better role in supporting the real economy, to meet investors' interest rate risk management demands and improve the
market‐led interest‐rate pricing mechanism. This adds a new milestone to the government's efforts to liberalize interest
rates in China. With the domestic bonds outstanding of CNY 84.2 trillion (USD 12.1 trillion) at the end of December
2019 estimated by Asian Development Bank,1 demands for interest‐rate options would be potentially tremendous.

The underlying of these options is the RMB loan prime rate (LPR), the foremost interest rate that matters to
businesses and households in China. The LPR is the lending rate provided by commercial banks to their highest‐quality
customers and prime clients, and it serves as the benchmark for lending rates provided for other loans by adding or
subtracting basis points based on it. For example, the 1‐year tenor LPR serves as the baseline for domestic corporate
borrowing with debt outstanding amount of about CNY 30 trillions (USD 4.3 trillion), and the 5‐year tenor LPR serves
as a baseline for housing mortgage loans of about CNY 30 trillions (USD 4.3 trillion).2 The current LPR quotation group
is comprised of 18 commercial banks in China, including an original core group of ten national banks, two municipal
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commercial banks, two rural village commercial banks, two foreign invested banks, and two privately operated banks.
China's central bank, the People's Bank of China (PBOC), has authorized the NIFC to serve as the designated publisher
of the LPR.

Since the LPR reformed on August 20, 2019, the LPR is called “new LPR” as rates shift toward market‐led system,
similar as the system for the London Interbank Offered Rate (LIBOR) (Duffie & Stein, 2015). The panel banks submit
quotations to the NIFC, with 0.05% or 5 basis points (bps) as tick size, before 9:00 a.m. (GMT+8) on the 20th day of each
month (holidays postpone). Quotations are partially determined by referring the medium‐term lending facility, a
liquidity policy toolkit created in 2014 by the PBOC for longer‐term loans. So, the LPR can be considered as a hybrid
rate shaped by China's central bank and major commercial banks. The NIFC calculates the arithmetic average of
quotations, after removing the highest and lowest quotes, and approximates to integral multiple times of 5 bps to
conclude the final LPR. At 9:30 a.m. (GMT+8), the LPR is released to the general public at websites of NIFC and PBOC.
Currently, the 1‐year LPR (1Y LPR) and the 5‐year LPR (5Y LPR) are published since August 20, 2019, and they are
released monthly.3 Since August 20, 2019, the LPR changes monthly on predetermined dates as a step function of
multiples of 5 bps. The daily time series of spot 1Y LPR and 5Y LPR are plotted in Figure 1. It is digital with a tick size
of 5 bps and changes only occur at predetermined times. Interestingly, as we can see from Figure 1, there are some
unique stylized features of the randomness in LPR time series: (1) nonnormal distribution for underlying returns; (2)
pure‐jump process (without diffusion); (3) deterministic jump timing on the 20th day of each month (holidays post-
pone); (4) discrete‐state jump sizes, that is, since August 20, 2019, the LPR changes can only be the multiples of 5 bps.
Note that, it is similar to but different from the well known US federal funds rate target. This rate is also a pure‐jump
process with 25‐bp tick‐size movements, but there still exists some uncertainty in the timing of jumps: its jump intensity
depends not only on the scheduled meeting calendar of the Federal Open Market Committee (FOMC) but also on the
macro state of the economy, see for example, Clarida et al. (2000), Piazzesi (2001, 2005, 2010), Cochrane and Piazzesi
(2002), and Hamilton and Jordà (2002). Potentially, China's LPR might offers the purest environment in the real world
for investigating the impacts of prescheduled macroeconomic events to asset prices. Our primary aim of this paper is to
provide a simplest extension of the standard Black model for interest‐rate option pricing that parsimoniously ac-
commodates these key stylized features in Figure 1 and this could also offer the foundation for more comprehensive
and realistic models in the future.

As early pointed out by Bates (1996, p. 567), the central empirical issue in option research is whether the dis-
tributions implicit in option prices are consistent with the time series properties of the underlying asset prices. In this
paper, we aim to develop a concise model for pricing vanilla LPR options, which is consistent with these stylized
features as presented in Figure 1. Our model can be considered as an extension of the classical LIBOR market model,
which is mainly developed by Miltersen et al. (1997), Brace et al. (1997) and Jamshidian (1997) further upon the HJM
framework of Heath et al. (1992) for instantaneous forward rates. Andersen and Andreasen (2000) and Joshi and
Rebonato (2003) extended it to local volatility models based on constant elasticity of variance (CEV) process and
displaced‐diffusion process, respectively. Andersen and Brotherton‐Ratcliffe (2001) and Han (2007) introduced sto-
chastic volatility models based on the CIR process (Cox et al., 1985), and Hagan et al. (2002) developed the SABR model
which is now widely used in industry. Moreover, Glasserman and Kou (2003) and R. Jarrow et al. (2007) extended to
jump‐diffusion models, and Eberlein and Özkan (2005), and Leippold and Strømberg (2014) advanced to Lévy
processes.

Although the current literature on interest‐rate option pricing is voluminous, these unique features presented in
Figure 1 bring a new challenge, as most models are based on diffusion processes or jump processes with random jump
timing (e.g., Lévy‐driven processes4). Instead, the key ingredient in our new model is the integer‐valued Skellam
distribution early introduced by Skellam (1946). Skellam distribution, defined as the difference of two Poisson random
variables, has been recently used and modified for modeling the goal difference of two opposing teams by Karlis and
Ntzoufras (2003) and high‐frequency tick‐by‐tick discrete price changes by Koopman et al. (2017). A few literature
considered the predetermined jump timing (e.g. for the US Federal Open Market Committee meetings or monthly
employment reports) in modeling interest rates, see for example, Piazzesi (2001, 2005, 2010) and Kim and Wright
(2016). However, their models are very different from our Skellam‐based continuous‐time model, and they have
additional diffusion components and were used primarily for analyzing time series of short‐term interest rates or

3For more details and the historical data of spot LPR, see http://www.chinamoney.com.cn/chinese/bklpr.
4It is well known that, any Lévy process has no fixed times of discontinuity due to its path property of stochastic continuity, see Sato (1999).
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pricing discount bonds rather than pricing interest‐rate derivatives. A very few and seemingly relevant literature, such
as Carr (2011) and Barndorff‐Nielsen et al. (2012), adopted Skellam processes for derivative pricing. However, these
processes are special cases of Lévy processes with random jump timing which are unsuitable for modeling the LPR with
fixed jump timing; moreover, they were applied to equity options rather than market‐based interest‐rate options, and
the tick‐size effect or discreteness effect in equity markets is generally much smaller than the one here in LPR interest‐
rate markets due to the change sizes relative to the underlying levels. Traditional discrete‐time (finite) discrete‐state
lattice‐based models, such as binomial trees and trinomial trees, and are of course too restrictive to model the LPR,
since marginally the level of LPR has the possibility of moving in multiple ticks just at a single announcement day, and
horizontally these lattice‐based models fail to capture the continuous‐time dynamics of LPR between any two suc-
cessive announcement times.

Our main contribution of this paper is the theoretical development of a pure‐jump Skellam market model with
deterministic jump timing5 for pricing LPR options in analytical forms, which is consistent with our observation of LPR
time series with unique features as plotted in Figure 1. This consistence between the risk‐neutral world and natural
world is achieved by a proper change of measure which guarantees no arbitrage. It is important, as it would further
facilitate more efficient risk management and more accurate option‐implied forward‐looking analysis. This new the-
oretical model is tailored and first applied to the China's interest‐rate options markets, and it is potentially applicable
for other markets if the underlying of traded options presents similar stylized features. Our key finding of great interest
in general is that, different from traditional options, the risk‐neutral intensity (rather than diffusion) plays a dominant
role in pricing these new LPR derivatives, which resemble the more familiar credit derivatives. In addition, our
preliminary empirical work shows that, the LPR's jump intensity, the only parameter in the model, presents intensity
frown implied from cap prices and intensity skew implied from swaption prices, which call for future research of model
extensions. Moreover, we derive algorithms for constructing a simple forward LPR curve from swap rate data, which
would act as the infrastructure for a further development of LPR option market.

This paper is organized as follows: Section 2 introduces our benchmark model for the LPR time series and
summarizes its key properties. In Section 3, we explain the LPR swap market, and develop algorithms for constructing
a simple forward LPR curve from swap rate data. Section 4, the main contribution of this paper, introduces the LPR
option market and develops our new market models based on the integer‐valued Skellam distribution for pricing

FIGURE 1 Daily time series of spot loan prime rates (1Y LPR and 5Y LPR, 20/8/2019–30/4/2020). LPR, loan prime rate

5Literature on option pricing with deterministic jump timing is also very rare, see a recent work by Dubinsky et al. (2019) for pricing equity options.
These jumps are used for modeling prescheduled earning announcements. However, they adopted a jump‐diffusion model living on a continuous‐
state space, which is different from our pure‐jump model on a discrete‐state space.
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vanilla interest‐rate options (caps, floors, and swaptions) in closed forms. Section 5 draws a brief conclusion for this
paper, and proposes some issues for further extensions and future research.

2 | BENCHMARK MODEL FOR LPR

In this section, we introduce a benchmark model for LPR time series. The aim is to keep our model as parsimonious as
possible but without losing key stylized facts as observed in Figure 1. Let us first construct a continuous‐time model for
the dynamics of discrete‐valued spot LPR as observed in Figure 1. The time‐tspot LPR, for lending to borrowers for the
period t t τ[ , + ] with a fixed period τ prevailing at time t , is denoted by L t t τ( , + ). There are only two choices for τ :
τ = 1, 5 in the unit of year. For simplicity, we denote both by

L t L t t τ t( ) ( , + ), 0,≔ ≥

which is characterized by the stochastic differential equation (SDE)

L t b tDd ( ) = d ( ), (1)

where

• tD( ) is a pure‐jump process on a probability space (Ω, , ) with a given filtration { }t t 0 ≥ ,

t D k DD( ) ( ), ( ) ,
k

n t

=0

( )

≔ ⋅ ∈

• b > 0 is a constant representing the minimum amount that the LPR can change, that is, tick size (b = 0.05% here);
• n t( ) is a deterministic right‐continuous6 point process with n (0) = 0, as illustrated in Figure 2, counting the total
number of LPR‐announcement times within the period t(0, ], that is,

n t a t1( ) { },
k

k

=1

≔ ≤
∞

• a{ }k k=1, … are the ordered sequence of predetermined LPR‐announcement times, and 1{ }⋅ is the indicator function;
• tick change D k( ) is an integer on the set of integers {0, ±1, ±2, …}≔ , representing the number of ticks that the
spot LPR changes at LPR‐announcement arrival time ak, and define D (0) 0≔ .

Solving the SDE (1) conditional on initial level L (0) gives the dynamics of LPR,

L t L b D k L b tD( ) = (0) + ( ) = (0) + ( ).
k

n t

=0

( ) (2)

In fact, the discrete‐valued random jump size at each LPR‐announcement arrival time can be iteratively expressed
by

L a L a L a bD k kΔ ( ) ( ) − ( ) = ( + 1), = 1, …,k k k+1 +1 +1
−≔

where L a L a( ) = ( )k k+1
− . The integer‐valued time series D k{ ( )}k=1, … are the only random components in LPR dynamics

(2). The LPR announcements occur monthly. If we ignore occasional announcement delays due to weekends or

6i.e., n t n s( ) = lim ( )
s t↓

.

528 | CHEN ET AL.



holidays for simplicity, a a− = 1 12k k+1 ∕ for any k = 1, … and a (0, 1 12]1 ∈ ∕ . So, n t( ) is a deterministic function of t
which can be written explicitly in general as

n t t a t( ) = 12( − ) + 1, 0,1 ≥ 

where u  is the floor under u, that is, the greatest integer less than or equal to u. In particular, if a = 1 121 ∕ , then, it is
simplified as

n t t t( ) = 12 , 0.≥ 

Obviously, n t n s n t s( ) − ( ) = ( − ) does not hold for all s t[0, )∈ in general. Due to this nonstationary (time‐
inhomogeneous) nature of deterministic process n t( ), the resulting LPR process L t( ) cannot be modeled appropriately
by most existing models (e.g. Lévy processes) in the literature.

The key ingredient in our new model is the Skellam distribution for modeling tick change D ( )⋅ . Skellam distribution
(Skellam, 1946) or Poisson‐difference distribution, is an integer‐valued distribution, simply constructed as the difference
between two independent Poisson‐distributed random variables N N,+ − with constant rate parameters λ λ, > 0+ − ,
respectively, that is,

D N N− ,+ −≔

which is denoted as D λ λ~ SK( , )+ − on . The probability mass function (PMF) of D is

D d λ λ e
λ

λ
λ λ dPr{ = ; , } = I (2 ), ,λ λ

d
+ − −( + )

+

−
+ −

d

+ − 2

∈


 


   (3)

where I ( )d ⋅ is the modified Bessel function of the first kind (Abramowitz & Stegun, 1972, p.375), that is,

( )
u

u

i d i

u

i i d
dI ( )

2 !Γ( + + 1)
=

( 2)

! ( + )!
, .d

d

i

u i

i

i d

=0

4

=0

2 +
2

≔
∕

∈
∞ ∞ 


 


 (4)

The cumulative distribution function (CDF) is

( )u D u e
λ

λ
λ λ uΨ( ) Pr{ } = I 2 , .

d

u
λ λ

d

=−

−( + )
+

−
+ −

d

+ − 2

≔ ≤ ∈
∞

 

 




 
 

The mean and variance D are given by

D λ λ D λ λ[ ] = − , Var[ ] = + .+ − + −

In particular, for the symmetric Skellam distribution, that is, λ λ λ= > 0+ − ≔ , the PMF is simplified as

FIGURE 2 A deterministic right‐
continuous point process n t( )
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D d λ e λ dPr{ = ; } = I (2 ), ,λ
d

−2 ∈  (5)

which was first derived by Irwin (1937). For example, the PMFs of Skellam distributions for a symmetric case
λ λ= = 3+ − and an asymmetric case λ λ= 2, = 3+ − are plotted in Figure 3, respectively.

Skellam distribution has been recently adopted and modified for modeling the goal difference of two opposing
teams by Karlis and Ntzoufras (2003) and high‐frequency tick‐by‐tick discrete price changes by Koopman et al. (2017).
Instead, we use it for modeling tick change D k( ) ∈ for LPR time series (2), that is,

D k λ λ k( ) ~ SK( , ), = 1, 2, …,+ −

where λ λ,+ − can be intuitively considered as the average numbers of potential upward and downward tick‐size
jumps per month, respectively, and only the difference of upward and downward jump numbers can be observed
in real world. Instead of looking at the analytical but rather complicated PMF (3), it may be more convenient to
use cumulants to characterize stylized facts, as also adopted by, for example, R. Jarrow and Rudd (1982), Backus
et al. (2011, 2014), and Martin (2013a, 2013b) for asset pricing models in finance. For example, the mean,
variance, skewness and excess kurtosis of LPR level L t( ) can be obtained directly based on the first four
cumulants as below.

Proposition 2.1 (Cumulants of LPR). The cumulant‐generating function (CGF) of the LPR level L t( ) based on our
setting (2) is given by

e L vL n t λ e λ eln [ (0)] = (0) + ( )[ ( − 1) + ( − 1)],vL t bv bv( ) + − − (6)

the mth cumulant is given by

( )κ t
L n t b λ λ m

n t b λ λ m
( ) =

(0) + ( ) − , = 1,

( ) [ + (−1) ], = 2, …,
m

m m

+ −

+ −

the mean, variance, skewness and excess kurtosis of L t( ) are given by

t L n t b λ λMean( ) = (0) + ( ) ( − ),+ − (7)

FIGURE 3 The probability mass functions of Skellam distributions D ~ SK(3, 3) and D ~ SK(2, 3)
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( )t n t b λ λ

t
n t

λ λ

λ λ

t
n t λ λ

Variance( ) = ( ) + ,

Skewness( ) =
1

( )

−

( + )
,

ExcessKurtosis( ) =
1

( )

1

+
.

2 + −

+ −

+ −

+ −

3
2 (8)

The proof is given by Appendix A.

The skewness and (excess) kurtosis are independent of tick size b. The excess kurtosis is always positive. The
distribution of L t( ) is positively skewed if λ λ>+ −, negatively skewed if λ λ<+ −, and symmetric if λ λ=+ −. The
relationships between the Skellam‐based distribution of L t( ) and normal distribution are summarized in Proposition
2.2. The results also help in explaining the theoretical links between our Skellam‐based option pricing models and the
well known Bachelier model in later sections.

Proposition 2.2 (Normal Approximation for LPR). A normal approximation for L t( ) is given by

L t L L n t b λ λ n t b λ λ( ) (0) N( (0) + ( ) ( − ), ( ) ( + )).+ − 2 + −≈ (9)

In particular, an asymptotics when λ λ λ= =+ − is given by

L t

b λn t
t

( )

2 ( )
N(0, 1), .→ → ∞ (10)

Proof is provided in Appendix B.

Based on observed tick changes D k{ ( )}k=1, …, the sample mean and sample variance immediately provide a
straightforward way for estimating λ λ( , )+ − via the method of moment estimation (MME). Since

μ λ λ λ λˆ = ˆ − ˆ , s = ˆ + ˆ ,D D
+ − 2 + −

we have

( ) ( )λ μ λ μˆ =
1

2
s + ˆ , ˆ =

1

2
s − ˆ ,D D D D

+ 2 − 2

where μ̂D and sD
2 are the sample mean and sample variance of tick changes, respectively. Based on the data as presented

in Figure 1, we obtain the MME‐estimated potential upward and downward intensities λ λ( ˆ , ˆ ) = (0.5, 1.5)
+ −

and
λ λ( ˆ , ˆ ) = (0.0357, 0.5357)

+ −
for the 1Y and 5Y LPRs, respectively. Alternatively, we may use the maximum likelihood

estimation based on the analytical (but rather complicated) PMF (3).

3 | LPR SWAPS AND FORWARD RATES

The LPR swap market provides the key infrastructure for further development and pricing of LPR option market. The 1Y‐LPR
and 5Y‐LPR interest rate swaps started trading on the so‐called X‐Swap system in August 2019. There are nine tenors including
6, 9 months and 1, 2, 3, 4, 5, 7, 10 years, and interests are paid quarterly. Quotations of swap rates are announced twice a day
on 12:10 and 16:40 for bid, ask and middle prices, respectively.7 This market data of co‐initial spot swap rates can be used to
obtain two important curves: discount rate curve (or equivalently zero curve), and forward rate curve. The former is used for

7For more details and historical data of LPR swap curves, see http://www.chinamoney.com.cn/chinese/bkcurvfx.
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discounting future cashflows to the present, while the latter is used for pricing interest‐rate derivatives.8 Instead of modeling
the unobservable instantaneous spot rates (i.e., short rates) or instantaneous forward rates, we work directly on the
LPR forward rates. The main aim of this section is to develop algorithms for construct a simple forward LPR curve from
market‐quoted swap rates, which are used as inputs in later sections for pricing interest‐rate options. For clarity, let
us first specify the notations and time grids for the collection of 9 co‐initial spot swap rates for a given spot date t and
a given type of LPR. For simplicity, we assume a unit notional amount. For the ıth swap, ı = 1, …, 9, there are a
set of increasing dates (i.e. a discrete tenor structure) t T T T< < < n0 1 ı

≤ ⋯ , where T T, …, n0 −1ı
are the floating‐leg reset

dates, T T, …, n1 ı
are settlement (payment) dates, and Tnı is the swap maturity date. We denote the time grids T TT { , …, }ı n0 ı

≔

for the ıth swap covering the period T T[ , ]n0 ı
, ı = 1, …, 9. Note that,T0 is the common start date for all swaps, and the lengths

of 9 swaps follows an increasing order as n n n< < <1 2 9⋯ , and define n 10 ≔ . Here, we have
n n n n n n n n n= 2, = 3, = 4, = 8, = 12, = 16, = 20, = 28, = 401 2 3 4 5 6 7 8 9 quarters for the nine LPR swaps, respectively.
For example, a LPR swap curve on March 25, 2020 is provided in Table 1.
Forward tenors, the time internals between two consecutive time grids (i.e., accrual periods), are denoted by

η T T j n− , = 1, …, ,j j j−1 9≔ (11)

which are typically 3 months. Swap tenors, the time internals between two consecutive swap‐maturity dates, are
denoted by

ζ T T ı− , = 1, …, 9,ı n nı ı−1
≔ (12)

and we define n 10 ≔ . For visualization, the whole structure of time grids for these nine swaps is illustrated in Figure 4,
where one grid is represented as one quarter.

By definition, the ıthsimple forward swap rateS t S t( ) ( )n ı0, ı
≔ at spot time t is set such that the spot time‐t value of the

ıth swap covering the period T T[ , ]n0 ı
is zero, that is,

P t T P t T S t η P t T t T ı( , ) − ( , ) = ( ) ( , ), [0, ], = 1, …, 9,n ı

j

n

j j0

=1

0ı

ı

∈ (13)

where P t T( , ) is the time‐t discount bond price. It is well known that, a forward swap rate can be expressed in terms of
spanning simple forward rates (Brigo & Mercurio, 2006, p. 239), that is, the ıth simple forward swap rate S t( )ı in (13)
can be rewritten as a nonlinear function of simple forward rates F t{ ( )}j j n=1, …, ı

, more precisely,

TABLE 1 The LPR swap curve on March 25, 2020

Term 3M 6M 9M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Swap rate 4.05 4.0063 3.93 3.875 3.82 3.8338 3.9 3.8325 3.95 3.95

Abbreviation: LPR, loan prime rate.

FIGURE 4 Visualization for the time grids of nine swaps (one grid one quarter)

8For simplicity, we only consider the single‐discounting curve framework in this paper.
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S t
η

η
t T ı

( ) =
1 −

=
1 −

, [0, ], = 1, …, 9,

ı

P t T

P t T

j

n

j

P t T

P t T

j

n

η F t

j

n

j m

j

η F t

( , )

( , )

=1

( , )

( , )

=1

1

1 + ( )

=1 =1

1

1 + ( )

0

nı

ı j

ı

j j

ı

m m

0

0

∈




 
(14)

where F t( )j is denoted as the simple forward rate for the future period T T[ , ]j j−1 prevailing at time t , that is,

F t F t T T
P t T P t T

η P t T
t T( ) ( ; , ) =

( , ) − ( , )

( , )
, [0, ],j j j

j j

j j
j−1

−1
−1≔ ∈

P t T( , )j−1 and P t T( , )j are time‐t prices of discount bonds maturing at Tj−1 and Tj, respectively. Note that, forward
rate F t( )j coincides with the spot LPR L t( ) at time point Tj−1, that is, F T L T( ) = ( )j j j−1 −1 .

In general, a recursive relationship between spot swap rates S T{ ( )}ı 0 ı=1, …, 9 at the common start date T0 and forward
rates F T{ ( )}j j n0 =1, …, ı

is found in Proposition 3.1.

Proposition 3.1 (Swap‐Forward Recursion). A recursive relationship between the ıth swap rate S T( )ı 0 and
spanning forward rates F T{ ( )}j j n0 =1, …, ı

is given by

S T η
η F T

η F T

η F T
S T η

η F T

1 − ( )
1

1 + ( )
(1 + ( ))

=
1

1 + ( )
+ ( )

1

1 + ( )
.

ı

j

n

j
m

j

m m m

n

m m

j n

n

j j
ı

j n

n

j
m n

j

m m

0

=1 =1 0 =1

0

= +1 0
0

= +1 = +1 0

ı ı

ı−1 ı−1

ı−1 ı−1 ı−1

  

  









(15)

The proof is provided in Appendix C.1.

As illustrated by Figure 4 for the time‐grid structure of 9 swaps, the forward rates within one year and beyond one
year (1Y+) need to be treated separately in two different ways. More precisely, based on (15) in Proposition 3.1 and
observations of spot swap rates at the common start dateT0, we can uniquely bootstrap all forward rates within one year
from swaps ı = 1, 2, 3 iteratively in closed forms as given by (18) in Theorem 3.1. However, the forward rates beyond
one year cannot be uniquely bootstrapped from swaps ı = 4, …, 9 without additional assumptions, as there are more
forward rates than swaps. If we further assume that all 1Y+‐forward rates are piecewise‐constant between two con-
secutive swap‐maturity dates, that is,

F T f j n n ı( ) = , = + 1, …, , = 4, …, 9,j ı ı0 ı−1 (16)

where f{ }ı ı=4, …, 9, are constants, then, all 1Y
+‐forward rates can be uniquely solved numerically via (15). For notational

consistence among all forward rates, we also denote

f F T ı( ), = 0, 1, 2, 3,ı ı+1 0≔ (17)

or,

f F T j( ), = 1, 2, 3, 4.j j−1 0≔

Note that, f F T L T( ) = ( )0 1 0 0≔ is known at time T0, as this forward LPR coincides with the associated spot LPR at
time T0. Initialized by forward rate f0, all remaining forward rates f{ }ı ı=1, …, 9 as given respectively by assumption (16)
and notation (17) can be uniquely solved exactly or approximately as summarized in Theorem 3.1. For approximation,
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we make a further assumption of no difference in day‐count conventions, which is commonly adopted in the interest‐
rate literature, see e.g. Brigo and Mercurio (2006).

Theorem 3.1 (Swap‐Implied Forward Curve). Forward rate fı can be uniquely solved (exactly for ı = 1, 2, 3, and
approximately for ı = 4, …, 9) in a closed form as

( ) ( )
f

S T

S T η η F T ζ
ı=

+ ( )

1 − ( ) 1 + ( )
−

1
, = 1, …, 9.ı

ζ ı

ı j
n

j m
j

η F T m
n

m m ı

1
0

0 =1 =1
1

1 + ( ) =1 0

ı

m m

ı−1

0

ı−1   (18)

The proof is provided in Appendix C.2.

The forward LPR curve from a straightforward implementation of Theorem 3.1 based on the swap market data on
25 March 2020 in Table 1 is plotted in Figure 5. In fact, some smoothing scheme for the forward rate curve can be
further developed by bootstrapping. However, it is not the focus of this paper.

4 | PRICING LPR OPTIONS

Our key idea for pricing LPR options is to extend the classical LIBOR market model (Brace et al., 1997; Jamshidian,
1997; Miltersen et al., 1997) by replacing the lognormal distribution by the (shifted and scaled) Skellam distribution, so
we denote our new model as Skellam market model.

4.1 | Pricing LPR caps and floors

We adopt the no‐arbitrage assumption for arbitrage‐free pricing in frictionless markets, or equivalently, the existence
of an equivalent martingale measure by the fundamental theorem of asset pricing (Harrison & Kreps, 1979;
Harrison & Pliska, 1981; Ross, 1978). By convention, it is much more convenient to price interest‐rate options under the
forward measure than the traditional risk‐neural measure. More precisely, if we take the tradable asset Ti‐bond as the
numéraire associated with Ti‐forward measure ~i , then, the simple forward rate process F t( )i is a i‐martingale.
What we actually need for pricing vanilla European‐type interest‐rate options, such as caps and floors, is the marginal
distribution at the time point Ti−1 under the associated measure i. There are many different specifications for this
distribution, such as lognormal distribution in the classical LIBOR market model. Here, to be consistent with our
specification (2) under the natural probability measure , we assume that, under measure i,

FIGURE 5 Forward LPR curve implied from market swap data on March 25, 2020 in Table 1. LPR, loan prime rate
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L T F T F b TD( ) = ( ) = (0) + ( ),i i i i i i−1 −1 −1 (19)

where

T D kD ( ) ( ),i i

k

n T

i−1

=1

( )i−1

≔ 

and D k{ ( )}i k=1, … are i.i.d. Skellam random variables under measure i, which is based on the change of measure for the
sum of Skellam random variables as given by Theorem D.1 in Appendix D.

Caplets are paid in arrears. The ith caplet settles at timeTi−1 and is paid 3 months later at timeTi. More precisely, the
time‐Ti payoff of the ith caplet with strike K and unit notional amount, starting at Ti−1 and maturing at Ti is

T η F T KCpl ( ) = ( ( ) − ) .i i i i i−1
+

Its current price is obtained in Theorem 4.1 as below.

Theorem 4.1 (Skellam‐based LPR Caplet Price). Based on our Skellam market model (19), the closed‐form time‐0
price for the ith caplet is given by

bη P T d κ e n T λCpl (0) = (0, ) ( − ) I (2 ( ) ),i i i

d κ

i
n T λ

d i i

=

−2 ( )
−1

i

i i−1

∞
 

  (20)

where ⋅  is ceiling function, I ( )d ⋅ is the modified Bessel function of the first kind (4),

κ
K F

b

− (0)
,i

i≔

λi is the intensity parameter under Ti‐forward measure i, and n T( )i−1 is the total number of LPR‐
announcement times within the period T(0, ]i−1 . The proof is provided in Appendix E.

The infinity sum in (20) can be easily calculated with high accuracy by truncation. We have only one parameter λi,
that is, the Skellam‐implied intensity from our pricing formula (20), just like the implied volatility from the classical
Black formula. For a simple illustration, we assume P T e(0, ) =i

rT− i with the reference parameter setting

T η T T F K λ r= 0.25, − = 0.25, (0) = = 4%, = 0.5, = 3%,i i i i i i−1 −1≔ (21)

with the nominal amount of one million. The values of the parameters are chosen to close their real levels in market.
The caplet prices generated from our Skellam market model against different parameter settings are plotted in black
color in Figure 6 as a numerical study.

Given the caplet price in (20), the associated floorlet then can be priced immediately by caplet‐floorlet parity (R. A.
Jarrow & Chatterjea, 2013, p. 728). A cap (floor) is just a portfolio of caplets (floorlets) whose maturities are 3 months apart.

4.1.1 | Black‐implied volatility

The world‐wide industrial convention for quoting the prices of vanilla interest‐rate options, such as caps/floors and
swaptions, is using the Black‐implied volatility (or lognormal‐implied volatility) based on the standard model of log-
normal market model. The Black model for interest‐rate options assumes that, under the forward measure i,

F T F F σ T σ Tln ( ) (0) ~ N ln (0) −
1

2
, ,i i i i i i−1 LN

2
−1 LN

2
−1 
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where σLN is the lognormal volatility of F t( )i . The Black formula for pricing the ith caplet is

η P T F d K dCpl (0) = (0, )( (0)Φ( ) − Φ( )),i i i i
LN

+ − (22)

where

d
σ T

σ T
d d σ T

ln ±
, = + ,

F

K i

i
iLN

±

(0) 1

2 LN
2

−1

−1
LN
+

LN
−

LN −1

i

≔

andΦ( )⋅ is the CDF of the standard normal distribution N(0, 1). Although it is obviously not a suitable choice for LPR options
due to the absence of diffusion in the LPR time series as observed in Figure 1, let us see how the Black‐implied volatility looks
like from our new model. In fact, as plotted in the second graph in Figure 7 under the parameter setting (21), the Black‐
implied volatility from our Skellam market model presents a renowned asymmetric volatility smile or volatility skew.

FIGURE 6 Caplet prices calculated from our Skellam model (in black color) and normal‐approximated (NA) Bachelier model (in red
color) against different parameter settings
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4.1.2 | Bachelier‐implied volatility

The simple normal market model, or Bachelier market model, recently becomes more popular in practice due to the
possible presence of negative interest rates, as also advocated in e.g. Corb (2012). The normal LMM assumes that, under
the forward measure i,

( )F T F F σ T( ) (0) ~ N (0), ,i i i i i−1 N
2

−1 (23)

where σN is the normal‐implied volatility (or Bachelier‐implied volatility) of F t( )i . Then, the formula for pricing the ith
caplet is given by

η P T σ T d d ϕ dCpl (0) = (0, ) ( Φ( ) + ( )),i i i i
N

N −1 N N N (24)

FIGURE 7 Black‐implied volatility σLN and Bachelier‐implied
volatility σN from our Skellam market model

CHEN ET AL. | 537



where

d
F K

σ T
x

π
e u ϕ u

π
e

(0) −
, Φ( )

1

2
d , ( )

1

2
.i

i

x u u
N

N −1 −

−
2

−
2

2 2

≔ ≔ ≔
∞


We can make a comparison with our new model via Bachelier‐implied volatility as plotted in the third graph in

Figure 7 under the parameter setting (21). In fact, the Bachelier‐implied volatility from our Skellam market model
presents a symmetric volatility smile. The theoretical relation between the distribution of the LPR based on Skellam
model and a normal distribution is provided in Proposition 2.2, which explains this symmetry. Ignoring these stylized
features of China's LPR time series as presented in Figure 1 would lead to pricing errors. More concretely, by applying
the normal approximation in Proposition 2.2 to F T( )i i−1 , that is, the forward rate at the time Ti−1 under the Ti‐forward
measure i, we have

F T F F b λn T( ) (0) N( (0), 2 ( )).i i i i i−1
2

−1
≈

Then, comparing it with the normal assumption (23) by the Bachelier, and setting the two variances equal, we
obtain the Bachelier‐implied volatility

σ b λ
n T

T
= 2

( )i

i
N

−1

−1

from the normal‐approximated Skellam model. Plugging it into the pricing formula (24) of the Bachelier, which results

an analytical expression, the difference between the resulting option price Cpl (0)i

N∼
and the Skellam‐generated price

(20) measures the pricing error of Bachelier's model. Based on the reference parameter setting (21), the caplet prices
calculated from our Skellam model (in black color) and normal‐approximated (NA) Bachelier model (in red color)
against different parameter settings are plotted in Figure 6, respectively. The associated pricing errors are provided in
Figure 8. We can observe that, caplets are mostly overpriced using the Bachelier model, and pricing errors are large
when the current forward rate is near the strike, intensity level is low, or current time is close to forward‐start date. Of
course, when the intensity is extremely close to zero, the option value tends to be nil, so both models agree at the origin.
In particular, the mispricing is smaller when forward‐start date is farther away. This is consistent in theory with the
asymptotics (10) when time approaches to infinity and Skellam converges to Bachelier. However, in reality, the
intensity is mostly quite small, and time is far away from infinity. In fact, only shorter‐dated option contracts are
liquidly traded in the market whereas very long‐term options are often highly illiquid or not available at all, so,
Bachelier's pricing errors cannot be generally neglected. Overall, the Bachelier model generally overprices at‐the‐
money (ATM) and short‐term options.

Finally, by summing up caplets and floorlets, the associated caps and floors are determined. Currently, standard
contracts of LPR caps and floors include three terms of 6, 9 months and 1 year, with nominal amount of one million
CNY and strike increments of 10 bps. Cap and floor prices are quoted by normal‐implied or Bachelier‐implied volatility.
Based on Theorem 4.1 and the assumption of a common intensity for all tenors (i.e., flat intensity) for simplicity, the
Skellam‐implied intensity surface based on a very limit amount of data of market‐quoted cap prices on March 26, 2020
is plotted in the left panel of Figure 9. For comparison, the associated Bachelier‐implied volatility surface is plotted on
the right. In particular, for example, within 9‐month time to maturity, both Skellam‐implied intensity and Bachelier‐
implied volatility present smile ( frown) (see Figure 10).

4.2 | Pricing LPR swaption

The ıth simple forward swap rate S t S t( ) ( )n ı0, ı
≔ as implied by (13) for t T[0, ]0∈ can be expressed as

S t
P t T P t T

A t
t T ı( ) =

( , ) − ( , )

( )
, [0, ], = 1, …, 9,ı

n

ı

0
0

ı ∈
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where A t( )ı is the swap annuity or present value of basis point (PVBP), that is,

A t η P t T( ) ( , ),ı

j

n

j j

=1

ı

≔ 

and it can be considered as a tradable asset. Then, we can take it as the numéraire associated with forward‐swap
measure ı, and S t( )ı is a ı‐martingale. Moreover, it is well known that, the simple forward swap rate (14) can be
alternatively interpreted as a weighted linear combination of spanning forward rates and can be approximated by
weight freezing at time 0, that is,

S t w t F t w F t( ) = ( ) ( ) (0) ( ),ı

j

n

j j

j

n

j j

=1 =1

ı ı

≈ 

FIGURE 8 Caplet pricing errors of normal‐approximated Bachelier model against different parameter settings
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where

w t
η P t T

η P t T
( )

( , )

( , )
.j

j j

m
n

m m=1
ı

≔ 

FIGURE 9 Skellam‐implied intensity surface and Bachelier‐implied volatility surface from market‐quoted cap prices on March 26, 2020

FIGURE 10 Skellam‐implied intensity frown and Bachelier‐implied volatility frown from market‐quoted 9‐month cap prices on March
26, 2020
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Rebonato (1998) found that the variability of weights is small in comparison with the variability of forwards, so the
weight terms can be approximated by their initial values. In fact, this weight freezing approach provides a reasonable
approximation, and empirically it has been validated intensively in the literature and widely adopted by the industry,
see also (Brigo & Mercurio, 2006, §8). To be consistent with our previous assumption in (19), we have

F T F b T j nD( ) = (0) + ( ), = 1, …, ,j j j ı0 0

then,

S T w F T

S b w TD

( ) (0) ( )

= (0) + (0) ( ),

ı

j

n

j j

n

j

n

j j

0

=1

0

=1

0

ı

ı

ı

≈ 
 (25)

where

T D kD ( ) ( ),j

k

n T

j0

=0

( )0

≔ 

and D k{ ( )}j k=1, … are i.i.d. Skellam random variables, and D (0) 0j ≔ . So, similarly, we assume that,

S T S b TD( ) = (0) + ( ),n n0 0ı ı
ı (26)

where

T D kD ( ) ( ),
k

n T

0

=0

( )

ı ı

0

≔ 

and D k{ ( )}k=1, …ı are i.i.d. Skellam random variables under measure ı, and D (0) 0ı ≔ . We can show that, the
distributions of (25) and (26) are approximatively the same, see the proof in Appendix F.

Swaption is an European call or put option on interest rate swap. The swaption maturity is the first reset date T0 of
the underlying interest rate swap, and the holder of payer swaption has the right (but not the obligation) to enter a
payer swap at T0. The payoff of the ıth payer swaption (i.e. T0‐into‐ T T( − )n 0ı

swaption, or T T T× ( − )n0 0ı
swaption) with

strike K and unit notional amount at the swaption maturity T0 is

T S T K η P T TPSwpt ( ) = ( ( ) − ) ( , ).ı n

j

n

j j0 0
+

=1

0ı

ı

Its current price in analytical form is provided in Corollary 4.1 as below.

Corollary 4.1 (Skellam‐based LPR Swaption Price). Based on our Skellam swap market model (26), the closed‐
form time‐0 price for the ıth payer swaption is given by

bA d κ e n T λPSwpt (0) = (0) ( − ) I (2 ( ) ),ı ı

d κ

ı
n T λ

d

=

−2 ( )
0

ı

ı
ı0

∞
 

  (27)

where ⋅  is ceiling function, I ( )d ⋅ is the modified Bessel function of the first kind (4),
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κ
K S

b

− (0)
,ı

ı≔

λ ı is the rate parameter under forward‐swap measure ı, and n T( )0 is the total number of LPR‐announcement
times within the period T(0, ]0 . The proof is provided in Appendix G.

Currently, standard contracts of LPR swaptions include five terms of 1, 3, 6, 9 months and 1 year, with nominal
amount of one million CNY and strike increments of either 5 or 10 bps. Swaption prices are quoted by normal‐implied
or Bachelier‐implied swap volatility. Based on Corollary 4.1, the Skellam‐implied intensity surface based on a very limit

FIGURE 11 Skellam‐implied intensity surface and Bachelier‐implied volatility surface from market‐quoted 6‐month swaption prices on
March 26, 2020

FIGURE 12 Skellam‐implied intensity skew and Bachelier‐implied volatility skew from market‐quoted 6‐month swaption prices with
6‐month time to maturity on March 26, 2020
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amount of data of market‐quoted 6‐month swaption prices on March 26, 2020 is plotted on the left panel of Figure 11.
For comparison, the associated Bachelier‐implied volatility surface is plotted on the right. In particular, for example,
with 6‐month time to maturity, both Skellam‐implied intensity and Bachelier‐implied volatility present smile (skew)
(see Figure 12). This preliminary empirical result of intensity skew implied from swaptions, together with intensity
frown implied from caps as seen in Figure 12, shows that, our Skellam‐based market model, similarly as the normal‐
based Bachelier model or lognormal‐based Black model, cannot fully capture the real data just by using a single
parameter, although it is consistent with the LPR time series as observed in Figure 1. This early warning enlightens
future investigations and model extensions for future research.

4.3 | Discussions: Black, Bachelier and Skellam

These three models (i.e., the market standard model of Black, the increasingly popular model of Bachelier, and our
newly‐introduced model of Skellam) are all two‐parameter models in the natural world and single‐parameter models in
the risk‐neutral world. So in theory they offer the same degree of flexibility, and almost have a 1‐1 correspondence
between each other. Now, it is quite fair for us to make comparisons among them. Both the Black and the Bachelier are
pure‐diffusion models, whereas the Skellam is a pure‐jump model.

Historically, the Black model takes over the Bachelier model as the market standard, mainly due to the fact that the
latter has a fatal flaw of possibly generating negative interest rate. However, this traditional argument may soon
become a history, as nowadays negative interest rates are possible in the real world (e.g., Japan) and even more
ubiquitous. The Bachelier's ability to generate negative interest rates now becomes an advantage over the Black. In
addition, it can also generate the implied‐volatility skew for option pricing. So it is an increasingly popular model in the
industry recently, as also advocated by leading practitioners, for example, Corb (2012).

Fortunately, our Skellam model retains both advantages of the Bachelier: possibilities for negative interest rates and
implied‐volatility skew (as presented in Figure 7). In theory, the Bachelier model can be considered as a special case,
the limiting version (as proved in Proposition 2.2), of our Skellam model. Moreover, our Skellam model offers some
extra advantages over the Bachelier: the former can generate asymmetric distributions for the LPRs with positive or
negative skewness when the potential upward and downward intensities are nonidentical, that is, λ λ+ −≠ (as proved in
Proposition 2.1), whereas the latter is normal and can only generate symmetric distributions. The time series of both 1Y
and 5Y LPRs currently have clear downward trends as presented in Figure 1. The associated sample skewnesses,
MME‐estimated potential upward and downward intensities of monthly 1Y and 5Y LPRs are −1.4842, −1.2288,
λ λ( , ) = (0.5, 1.5), (0.0357, 0.5357)+ − , respectively. The potential downward intensities are much larger than the up-
ward ones, which capture the significantly negatively skewed feature of LPR time series in actual data. Therefore,
Bachelier's model is insufficient here. Finally, the Skellam is the only model of the three that can capture these stylized
features (such as state discreteness and timing fixation) of China's LPR time series as presented in Figure 1. Inability to
take into account these crucial features may lead to sizable mispricing as demonstrated in Section 4.1 and Figure 8, and
traditional models such as the Bachelier are not safe to use in general. So among these three parametrically parsi-
monious models equipped with the same number of parameters, it shall be fair for us to make a claim that our Skellam
model is superior to traditional models of Black and Bachelier at least in the current China's LPR market.

5 | CONCLUDING REMARKS

China's LPR time series present some unique features of the randomness which cannot be captured appropriately by
existing models for interest‐rate options in the literature. Our key finding of great interest in general is that, different from
traditional options, the risk‐neutral intensity (rather than diffusion) plays a dominant role in pricing these new LPR
derivatives, which resemble the more familiar credit derivatives. In this paper, we introduced Skellam market model, a novel
market model based on the integer‐valued Skellam distribution, for modeling LPR time series and pricing vanilla LPR
options in analytical forms. Our primary aim of this paper is to develop a parametrically parsimonious continuous‐time
model in the simplest possible setting that can capture key features of LPR, and could serve as a benchmark easily
implementable in practice, parallelly with current market standards of Black's lognormal and Bachelier's normal market
models. To be consistent with our observation typically as Figure 1, we advocate that it is more meaningful to quote LPR
option prices in terms of the implied intensity rather than the conventional implied volatility. Indeed, there is virtually no
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diffusion component in the underlying at all. This consistence is important, as it would facilitate more efficient risk
management and more accurate option‐implied forward‐looking analysis. This newmodel is first applied to China's interest‐
rate options market, and it is of course extendable for other markets if the underlying of traded options would present
similar features. In fact, this model allows numerous potential extensions with multiple factors, time‐varying jump rates, the
difference of two more general count models (such as doubly stochastic Poisson or Cox models with randomized intensities)
and multiple‐discounting curves, which may serve better in explaining more real data of LPR time series and option prices,
such as Skellam‐implied intensity smile, that is, the intensity frown implied from caps and intensity skew implied from
swaptions as presented in Figures 10 and 12, respectively. Obvious extensions for addressing these issues are local intensity
and stochastic intensity models, parallelly with existing voluminous literature on local volatility and stochastic volatility
models. At this moment, however, we only have a short history of LPR time series and a very limited amount of LPR option
data, and comprehensive empirical studies associated with these models would surely follow once longer spans of data
become available. They are all proposed for future research.
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APPENDIX A: PROOF FOR PROPOSITION 2.1

Proof. Based on our model (2), it is straightforward to obtain the mean by

μ t L t L b D k L n t b λ λ( ) [ ( )] = (0) + [ ( )] = (0) + ( ) ( − ).
k

n t

1
=0

( )
+ −≔  (A1)

Note that, D (0) 0≔ . To fully characterize the distributional properties, let's us derive the transformation
functions for L t( ). The the moment‐generating functions (MGFs) of N N,+ − are

[ ] [ ]e λ e e λ e= exp( ( − 1)), = exp( ( − 1)),vN v vN v+ −+ −
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then, the MGF of D is

[ ]e e λ e λ e[ ] = = exp( ( − 1) + ( − 1)).vD v N N v v( − ) + − −+ −

So, the MGF of L t( ) is

e L e vbD k

vL n t λ e λ e

[ (0)] = exp( ( ))

= exp( (0) + ( )[ ( − 1) + ( − 1)]),

vL t vL
k
n t

bv bv

( ) (0)
=1
( )

+ − −

 







and the cumulant‐generating function (CGF) is given by

v t e L vL n t λ e λ eK( , ) ln [ (0)] = (0) + ( )[ ( − 1) + ( − 1)].vL t bv bv( ) + − −≔ 

Then, we can derive any cumulant by

κ t
v t

v
m( ) =

K( , )
, ,m

m

m
v=0

+∂

∂
∈

where κ t( )m is the mth cumulant. Then, we have

κ t κ t
κ t

κ t

κ t

κ t
mean = ( ), variance = ( ), skewness =

( )

( )
, excess kurtosis =

( )

( )
.1 2

3

2

4

2
23

2

For the first cumulant, we have

κ t
v t

v
L n t b λ λ( ) =

K( , )
= (0) + ( ) ( − ).

v
1

=0

+ −∂

∂

It is easy to find a similar structure for any higher‐order cumulants analytically as summarized by

κ t
v t

v
L n t b λ λ m1( ) =

K( , )
= (0) + ( ) [ + (−1) ], .m

m

m
v

m
m m

=0
{ =1}

+ − +∂

∂
∈

Then, we can easily obtain the mean, variance, skewness and excess kurtosis as given by Proposition 2.1. □

APPENDIX B: PROOF FOR PROPOSITION 2.2

Proof. It is easy to look at their distributional links via their probability transform functions. Based on the CGF
(6), simply replacing v by v

b n t( )
, we have the CGF of L t

b n t
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( )
,
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(B1)
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where by applying the Taylor's expansion to exponential functions,

e
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n t i

v
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By ignoring relatively small terms in the expansion (B1),

e L
L

b n t
v λ v n t v λ v n t v
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b n t
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we can also find a normal approximation,

L t

b n t
L
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n t λ n t λ λ λ
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(0) N

(0)

( )
+ ( ) − ( ) , + ,+ − + −≈









or, (9). In particular, if the distribution is symmetric, that is, λ λ λ= =+ − , then, based on the expansion (B1),
we have

e L
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If t → ∞, then, n t( ) → ∞ and

e L λvlim ln (0) = ,
t

L t

b n t
v

( )

( ) 2
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which implies a normal distribution λN(0, 2 ). So, we have (10). □

APPENDIX C: PROOFS FOR SWAP ‐IMPLIED FORWARD CURVE

Proof for Proposition 3.1

Proof. By (14), we have

( )

S T
η

η F T
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Note that,
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then, we obtain
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□

Proof for Theorem 3.1

Proof. Note that, n n n n1, = 2, = 3, = 40 1 2 3≔ , we have

n n ı− = 1, = 1, 2, 3.ı ı−1

Then, based on Proposition 3.1, we have
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where f F T( )ı n 0ı
≔ can be uniquely solved exactly in a closed form as
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−

1
. = 1, 2, 3.ı

η ı

ı j
n

j m
j

η F T m
n

m m n

1
0

0 =1 =1
1

1 + ( ) =1 0

nı

m m
ı

ı−1

0

ı−1   (C1)

Based on Proposition 3.1 and the assumption (16) for the 1Y +‐forward rates, we immediately have
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   (C2)

Note that, approximately η η= = =n n−1
1

4ıı−1
⋯ , we can rewrite (C2) as
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By Taylor expansion, we have
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Hence, we have
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where fı can be uniquely solved approximately in a closed form as
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f
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   (C3)

By noticing that the mathematical forms of (C1) and (C3) share a lot of similarities, it is possible to combine
them into a unified expression (18). Note that, for ı = 1, 2, 3, by definitions (11) and (12),

η T T ζ= − = ,n n n ı−1ı ı ı

then, (C1) can be rewritten as the same form as (C3) for ı = 4, …, 9. "9" □

APPENDIX D: CHANGE OF MEASURE FOR SKELLAM SUMMATION

Theorem D.1. For a positive constant λ > 0 and any given time point T > 0, under the equivalent measure
~ defined by the Radon–Nikodỳm derivative

λ λ λ n T
λ

λ
N k

λ

λ
N k

d

d
= exp ( + − 2 ) ( ) + ln ( ) + ln ( ) ,

k

n T
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+ −

+
=0
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+

−
=0

( )
− 






 


 


 






 (D1)

TD( ) follows a symmetric Skellam distribution n T λ n T λSK( ( ) , ( ) ).

Proof. Obviously, the summation of Skellam random variables still follows a Skellam distribution, that is,

t D k N k N k N k N k tD( ) ( ) = ( ( ) − ( )) = ( ) − ( ), 0,
k

n t

k

n t

k

n t

k

n t

=0

( )

=0

( )
+ −

=0

( )
+

=0

( )
−≔ ≥   

is a Skellam random variable defined by two parameters n t λ n t λ( ( ) , ( ) )+ − . Then, under the natural (data‐
generating) probability measure , we have T n T λ n T λD( ) ~ SK( ( ) , ( ) )+ − . It is also easy to see that, d

d
as defined

by (D1) is valid to serve as a Radon‐Nikodỳm derivative, because it is a positive random variable and [ ] = 1
d

d
.

Based on the Radon‐Nikodỳm derivative (D1), the MGF of TD( ) under the new measure is given by
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which implies that, TD( ) under the new measure still follows a Skellam distribution but with identical
parameters λn T( ), that is, T n T λ n T λD( ) ~ SK( ( ) , ( ) ). □

APPENDIX E: PROOF FOR THEOREM 4.1

Proof. It is easy to see that in the assumption (19),9 the sum of Skellam random variables is still a Skellam
random variable, ( )t n t λ n t λD ( ) ~ SK ( ) , ( )i i i

+ − . Based on Theorem D.1, if the measure i is defined by the Radon‐
Nikodỳm derivative
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then, under the measure i, T n T λ n T λD ( ) ~ SK( ( ) , ( ) )i i i i i i−1 −1 −1 , so, we have

F T F b T FD[ ( )] = (0) + [ ( )] = (0).i i i i i i−1 −1i i

The caplet is a tradable asset, so, its time‐t relative price w.r.t. the time‐tTi‐bond price P t T( , )i ,
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and we have the time‐0 caplet price
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The PMF of symmetric Skellam distribution is given explicitly by (5), then, we obtain (20). □

9In fact, the assumption for the dynamics of F t( )i is not needed, and only the marginal distribution at the time point Ti−1 is used here.
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APPENDIX F: PROOF FOR SWAP APPROXIMATION

The MGF of a symmetric Skellam random variable D λ λ~ SK( , ) is
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Therefore, w TD(0) ( )j
n

j j=1 0
ı and D k( )k

n T
=1
( )

ı0 have approximately the same distribution when λ w λ= (0)j
n

j j=1
2ı ı .

APPENDIX G: PROOF FOR COROLLARY 4.1
The swaption is a tradable asset, so, its time‐t relative price with respect to the time‐t value of swap annuity A t( )ı ,

t

A t
t T

PSwpt ( )

( )
, [0, ],ı

ı
0∈

is a ı‐martingale, then,

T

A T A

PSwpt ( )

( )
=

PSwpt (0)

(0)
,ı

ı

ı

ı

0

0

ı









and the time‐0 price of the ıth swaption is
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Based on our distributional assumption (26) for S T( )ı 0 , the remaining proof is the same as the one for Theorem 4.1.
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